シラバス
※学期中に内容が変更になることがあります。

2020年度


31696505 

△Applied Mathematical Analysis(E)
Applied Mathematical Analysis (E)
2単位/Unit  秋学期/Fall  京田辺/Kyotanabe  講義/Lecture

  西村 直志

<概要/Course Content Summary>

In this course, we will study solutions of classical linear partial differential equations in science and engineering using complex variable methods and Fourier analysis. Prerequisites are some knowledge of calculus and of linear algebra.

<到達目標/Goals,Aims>

Our goals are as follows:  
(1) To understand how the partial differential equations in science and engineering are solved with complex variables and Fourier analysis. 
(2) To learn how to use the residue theorem to compute integrals.  
(3) To understand basics of inverse problems.

<授業計画/Schedule>

(実施回/
Week)
(内容/
Contents)
(授業時間外の学習/
Assignments)
(実施回/ Week) (内容/ Contents) Introduction and review of complex analysis I  (授業時間外の学習/ Assignments) To review basics of complex analysis. 
(実施回/ Week) (内容/ Contents) Review of complex analysis II  (授業時間外の学習/ Assignments) Homework 
(実施回/ Week) (内容/ Contents) Review of Fourier analysis I  (授業時間外の学習/ Assignments) To review basics of Fourier analysis. 
(実施回/ Week) (内容/ Contents) Review of Fourier analysis II  (授業時間外の学習/ Assignments) Homework 
(実施回/ Week) (内容/ Contents) Laplace's equation I  (授業時間外の学習/ Assignments) To review what you have learned in the class 
(実施回/ Week) (内容/ Contents) Laplace's equation II  (授業時間外の学習/ Assignments) Homework 
(実施回/ Week) (内容/ Contents) Green's function and boundary element method  (授業時間外の学習/ Assignments) Homework 
(実施回/ Week) (内容/ Contents) Heat equation I  (授業時間外の学習/ Assignments) To review what you have learned in the class 
(実施回/ Week) (内容/ Contents) Heat equation II  (授業時間外の学習/ Assignments) Homework 
(実施回/ Week) 10  (内容/ Contents) Wave equation I  (授業時間外の学習/ Assignments) To review what you have learned in the class 
(実施回/ Week) 11  (内容/ Contents) Wave equation II  (授業時間外の学習/ Assignments) Homework 
(実施回/ Week) 12  (内容/ Contents) Helmholtz's equation  (授業時間外の学習/ Assignments) Homework 
(実施回/ Week) 13  (内容/ Contents) Inverse problem I  (授業時間外の学習/ Assignments) To review what you have learned in the class 
(実施回/ Week) 14  (内容/ Contents) Inverse problem II  (授業時間外の学習/ Assignments) Homework 
(実施回/ Week) 15  (内容/ Contents) Final review  (授業時間外の学習/ Assignments) Review the whole course 

According to the achievement level of students, part of contents may be changed or deleted, or new topics may be introduced. Further changes may be possible depending of the COVID19 situation, which will be announced via DUET.

<成績評価基準/Evaluation Criteria>

Exercises to be reported  80%  Ordinary grading 
Term-end examination  20%  Ordinary grading 

Some home tasks will be given during the term.

<テキスト/Textbook>

Textbook(s) will not be designated. Reading and other related material will be distributed as needed.

<参考文献/Reference Book>

A. Sommerfeld , Partial differential equations in physics .   (Academic press, 1964) .  ISBN:978-0126546583 

 

今村勤  『物理とグリーン関数』(岩波、2016)ISBN:978-4000077194 
 

 

お問合せは同志社大学 各学部・研究科事務室まで
 
Copyright(C) 2020 Doshisha University All Rights Reserved. 無断転載を禁止します。