シラバス
※学期中に内容が変更になることがあります。

2020年度


31695001 

△Advanced Analysis(E)
Advanced Analysis (E)
2単位/Unit  秋学期/Fall  京田辺/Kyotanabe  講義/Lecture

  竹井 義次

<概要/Course Content Summary>

As an developed course of functional analysis, we explain the spectral theory for linear operators on Hilbert spaces. The main subjects are the spectral theory for compact operators, which is an infinite dimensional version of eigenvalue problems for matrices, and the spectral theorem for self-adjoint operators. We also discuss the spectrum for Schrödinger operators as their applications. 

<到達目標/Goals,Aims>

One can understand various concepts regarding the spectrum for linear operators on Hilbert spaces, prove and apply several fundamental theorems such as the spectral theorem for oneself.

<授業計画/Schedule>

(実施回/
Week)
(内容/
Contents)
(授業時間外の学習/
Assignments)
(実施回/ Week) (内容/ Contents) Introduction --- from finite dimension to infinite dimension  (授業時間外の学習/ Assignments) Review of lectures 
(実施回/ Week) (内容/ Contents) Linear opeators on Hilbert spaces  (授業時間外の学習/ Assignments) Review of lectures 
(実施回/ Week) (内容/ Contents) Resolvent and spectrum  (授業時間外の学習/ Assignments) Review of lectures 
(実施回/ Week) (内容/ Contents) Compact operators  (授業時間外の学習/ Assignments) Review of lectures 
(実施回/ Week) (内容/ Contents) Fredholm operators and their indices  (授業時間外の学習/ Assignments) Review of lectures 
(実施回/ Week) (内容/ Contents) Riesz-Schauder theorem  (授業時間外の学習/ Assignments) Review of lectures 
(実施回/ Week) (内容/ Contents) Symmetric operators and self-adjoint operators  (授業時間外の学習/ Assignments) Review of lectures 
(実施回/ Week) (内容/ Contents) Spectral theory for self-adjoint operators (1) --- spectral projection  (授業時間外の学習/ Assignments) Review of lectures 
(実施回/ Week) (内容/ Contents) Spectral theory for self-adjoint operators (2) --- spectral theorem  (授業時間外の学習/ Assignments) Review of lectures 
(実施回/ Week) 10  (内容/ Contents) Spectral theory for self-adjoint operators (3) --- operator calculus  (授業時間外の学習/ Assignments) Review of lectures 
(実施回/ Week) 11  (内容/ Contents) Absolutely continuous spectrum and singular spectrum  (授業時間外の学習/ Assignments) Review of lectures 
(実施回/ Week) 12  (内容/ Contents) Schrödinger operators  (授業時間外の学習/ Assignments) Review of lectures 
(実施回/ Week) 13  (内容/ Contents) Schrödinger semi-group and Fourier transform  (授業時間外の学習/ Assignments) Review of lectures 
(実施回/ Week) 14  (内容/ Contents) Spectrum for Schrödinger operators  (授業時間外の学習/ Assignments) Review of lectures 
(実施回/ Week) 15  (内容/ Contents) Eigenfunctions expansions  (授業時間外の学習/ Assignments) Review of lectures 

<成績評価基準/Evaluation Criteria>

Term-end examination  75%  Understanding the fundamental parts of the spectral theory and ability of solving related basic problems 
Class participation  25%  Positive attitude for the class participation 

<参考文献/Reference Book>

Shigetoshi Kuroda  『Functional Analysis』(Kyoritsu Publishing、1980)
 

 

お問合せは同志社大学 各学部・研究科事務室まで
 
Copyright(C) 2020 Doshisha University All Rights Reserved. 無断転載を禁止します。