(実施回/ Week)
|
(内容/ Contents)
|
(授業時間外の学習/ Assignments)
|
(実施回/ Week)
1
|
(内容/ Contents)
Introduction: transport-phenomenological approaches to designing chemical processes
|
(授業時間外の学習/ Assignments)
Relevant/assigned references to be gone through in advance (1 hr)
|
(実施回/ Week)
2
|
(内容/ Contents)
Three basic laws of molecular transport: (1) Newton's law of viscosity
|
(授業時間外の学習/ Assignments)
Relevant references to be gone over; Handout (corresponding to Text pp.16-21,34-37) to be gone through in advance (1 hr each)
|
(実施回/ Week)
3
|
(内容/ Contents)
Three basic laws of molecular transport: (2) Fourier's law of heat conduction; (3) Fick's law of diffusion 【Quiz (1)】
|
(授業時間外の学習/ Assignments)
Handout (corresponding to Text pp.16-21,34-37) to be gone over; Handout (corresponding to Text pp.266-269,283-286; 514-517,533-538) to be gone through in advance (1 hr each)
|
(実施回/ Week)
4
|
(内容/ Contents)
Shell balances: setting up ordinary differential equations for simple geometries 【Quiz (2) ―> Report】
|
(授業時間外の学習/ Assignments)
Handout (corresponding to Text pp.pp.266-269,283-286; 514-517,533-538) to be gone over; Text pp.40-61 to be gone through in advance (1.5 hrs each)
|
(実施回/ Week)
5
|
(内容/ Contents)
Derivation of general equations of change: (0) equation of continuity (total mass balance)
|
(授業時間外の学習/ Assignments)
Text pp.40-61 to be gone over; Text pp.75-78 to be gone through in advance (1 hr each)
|
(実施回/ Week)
6
|
(内容/ Contents)
Derivation of general equations of change: (1) equation of motion (momentum balance)-Part 1
|
(授業時間外の学習/ Assignments)
Text pp.75-78 to be gone over; Text pp.78-80 to be gone through in advance (1 hr each)
|
(実施回/ Week)
7
|
(内容/ Contents)
Derivation of general equations of change: (1) equation of motion (Navier-Stokes equation)-Part 2 【Quiz (3)】
|
(授業時間外の学習/ Assignments)
Text pp.78-80 to be gone over; Text pp.83-86 to be gone through in advance (1.5 hrs each)
|
(実施回/ Week)
8
|
(内容/ Contents)
Derivation of general equations of change: (2) equation of energy (energy balance) 【Quiz (4) ―> Report】
|
(授業時間外の学習/ Assignments)
Text pp.83-86 to be gone over; Text pp.81-82,333-341 to be gone through in advance (1 hr each)
|
(実施回/ Week)
9
|
(内容/ Contents)
Derivation of general equations of change: (3) equations of continuity for multicomponent systems (species material balances)
|
(授業時間外の学習/ Assignments)
Text pp.81-82,333-341 to be gone over; Text pp.582-586 to be gone through in advance (1 hr each)
|
(実施回/ Week)
10
|
(内容/ Contents)
Summary of equations of change: 1+3 general forms in terms of their analogical relationship 【Quiz (5) ―> Report】
|
(授業時間外の学習/ Assignments)
Text pp.582-586 to be gone over; Text pp.586-589 to be gone through in advance (1 hr each)
|
(実施回/ Week)
11
|
(内容/ Contents)
Solving equations of change: (0)&(1) equations of continuity and motion--simplification with judicious assumptions
|
(授業時間外の学習/ Assignments)
Text pp.586-589 to be gone over; Text pp.86-91 to be gone through in advance (1 hr each)
|
(実施回/ Week)
12
|
(内容/ Contents)
Solving equations of change: (0)&(1) solution of the remaining ordinary differential equations (ODEs) 【Quiz (6) ―> Report】
|
(授業時間外の学習/ Assignments)
Text pp.86-91 to be gone over; Text pp.93-96 to be gone through in advance (1.5 hrs each)
|
(実施回/ Week)
13
|
(内容/ Contents)
Solving equations of change: (0),(1)&(3) illustrative applications to more complicated situations 【Quiz (7) ―> Report】
|
(授業時間外の学習/ Assignments)
Text pp.93-96 to be gone over; Text pp.558-561 to be gone through in advance (1.5 hrs each)
|
(実施回/ Week)
14
|
(内容/ Contents)
Exploring unsteady transport processes characterized by partial differential equations (PDEs),and methods of solution
|
(授業時間外の学習/ Assignments)
Text pp.558-561 to be gone over; Text pp.114-117,374-378 to be gone through in advance (1 hr each)
|
(実施回/ Week)
15
|
(内容/ Contents)
Exploring combined balances involving the use of proper empirical correlations for transfer coefficients in complex geometries 【Quiz (8) ―> Report】
|
(授業時間外の学習/ Assignments)
Text pp.114-117,374-378 to be gone over; Text pp.97-103 to be gone through in advance (1 hr each)
|